DNA Nano-Adapter: Impuls für Einzelmolekül DNA-Sequenzierung
Wissenschaftlerinnen und Wissenschaftler der Technischen Universität Braunschweig haben einen winzigen Adapter entwickelt, der es ermöglicht, Moleküle mit Nanostrukturen im ein Milliardstel Meter Bereich zu verbinden und an einem gewünschten Ort zu platzieren. Die Entwicklung kann vor allem für die Entschlüsselung des Erbgutes (DNA-Sequenzierung) von Bedeutung sein, die als Schlüsselmethode bei der Analyse genetisch bedingter Erkrankungen gilt. In der aktuellen Ausgabe der Fachzeitschrift „Nano Letters“ stellen die Wissenschaftlerinnen und Wissenschaftler nun ihre Forschungsergebnisse vor.
Bei der Einzelmolekül DNA-Sequenzierung werden einzelnen Grundbausteine der DNA-Stränge, die Nukleotide, analysiert. „Eine revolutionäre Methode ist, wenn in Echtzeit beobachtet wird, wie einzelne Nukleotide zu einem ganzen DNA-Strang zusammengefügt werden“, erläutert Prof. Philip Tinnefeld. „Das ist fast wie in einer Live-Übertragung.“ Bestimmte Enzyme, die so genannten Polymerasen, inkorporieren die Nukleotide und fungieren dabei ähnlich wie der Zipper in einem Reißverschluss, der dabei hilft, die beiden offenen Häkchen zusammenzufügen und zu verschließen. Um diesen Prozess zu beobachten, nutzen Wissenschaftler dazu bisher spezielle Objektträger, mit denen sie der Reihenfolge der unterschiedlichen Nukleotiden auf die Schliche kommen. Auf einer Glasplatte wird ein Metallfilm mit winzigen, hochpräzise angebrachten Löchern aufgetragen. Diese Löcher nennt man Zero Mode Waveguides (ZMWs). „Eine besondere Herausforderung für diese Anwendung ist das Bestücken dieser Nano-Löcher mit exakt einer Polymerase, an die dann die Nukleotide andocken können“, erklärt Prof. Tinnefeld. Üblicherweise werden diese Biomoleküle eher zufällig auf die ZMWs verteilt. Dadurch bleiben viele unbesetzt oder andere beherbergen mehr als ein Polymerase-Molekül, so dass selbst bei optimalem Beladen auf diese Weise nur 37 Prozent der Fläche ausgenutzt werden, so der Experte für Nano-Bio-Wissenschaften.
Moleküle verbinden und richtig platzieren
Seiner Forschergruppe ist es nun gelungen, eine neue Strategie für eine effizientere Nutzung der ZMWs vorzuschlagen. Dafür konnten die Braunschweiger Nano-Experten vom Institut für Physikalische und Theoretische Chemie im Laboratory of Emerging Nanometrology der Technischen Universität Braunschweig auf ihre bisherigen Erfahrungen bei der Anwendung der so genannten DNA-Origami Technik zurückgreifen: Dabei falten die Wissenschaftlerinnen und Wissenschaftler buchstäblich aus einzelnen Strängen des Erbgutes von Viren eine Vielzahl passgenauer Strukturen. Nun haben sie diese Strukturen so angepasst, dass in jedem ZMW exakt ein Nanoadapter binden kann. Die Nanoadapter bieten zusätzlich Anbindestellen für funktionelle Einheiten, wie etwa einzelne fluoreszierende Farbstoffe oder für die DNA-Sequenzierung wichtigen Polymerase-Moleküle. „In unserer neuen Strategie verbinden wir einzelne Moleküle aus dem DNA-Origami mit den lithographisch hergestellten Nanostrukturen der ZMWs. Dieses Verfahren kann die Effizienz der DNA-Sequenzierung verbessern und auch in anderen Gebieten wie der molekularen Elektronik kann es Anwendungsmöglichkeiten geben, da wir die Welt der Moleküle an lithographisch hergestellte Strukturen anpassen können“, fasst Prof. Tinnefeld zusammen.
Zum Forschungsprojekt
Das von der Arbeitsgruppe NanoBioSciences von Prof. Philipp Tinnefeld (Institut für Physikalische und Theoretische Chemie) im neuen Laboratory of Emerging Nanometrology der Technischen Universität Braunschweig durchgeführte Forschungsprojekt wurde durch einen Starting Grant des European Research Council (SiMBA) gefördert.
Kontakt
Prof. Philip Tinnefeld
Dr. Guillermo Acuna
Institut für Physikalische und Theoretische Chemie
Arbeitsgruppe NanoBioSciences
Laboratory of Emerging Nanometrology
Technische Universität Braunschweig
Hans-Sommer-Straße 10
38106 Braunschweig
Tel: 0531 391 5330
E-Mail: p.tinnefeld@tu-braunschweig.de
www.tu-braunschweig.de/pci
www.tu-braunschweig.de/mib/lena
DNA nano-adapters: stimulus for single-molecule DNA sequencing
Scientists at the Braunschweig University of Technology have developed tiny adapters that allow the coupling of molecules to nanostructures and their precise positioning on the scale of a millionth of a millimeter. This development is of relevance especially for DNA sequencing, which is considered the key technology for the analysis of inherited diseases. The latest results are presented in the current issue of the journal “Nano Letters”.
For DNA sequencing, individual nucleotides are analyzed which are the building blocks of DNA. “Monitoring the incorporation of single nucleotides into a full DNA strand in real-time is a revolutionary method”, Prof. Philip Tinnefeld explains. “It’s almost a live broadcast”. Special proteins, the so-called DNA polymerases, incorporate the nucleotides in a zipper like fashion to build a double stranded DNA strand. In order to observe this process and extract the order of nucleotides, scientists employ special cover slides. A glass slide is coated with a thin metal film that contains tiny holes, so-called zeromode waveguides (ZMWs). “The challenge for this application is to equip each of these nano-holes with exactly one polymerase that utilize the nucleotides”, Prof. Philip Tinnefeld says. Usually, these biomolecules are deposited randomly in the ZMWs, which results in many empty ZMWs while others contain multiple polymerase molecules. Even for the optimal situation, only 37 % of the holes can be used, as the expert for Nano-Bio-Sciences explains.
Coupling and positioning of molecules
His research group now achieved a more efficient usage of the ZMWs by developing a new binding strategy. For this, the nano-experts from the Institute for Physical and Theoretical Chemistry in the Laboratory of Emerging Nanometrology (Braunschweig University of Technology) could use their experience of working with the so-called DNA origami technique: the Braunschweig scientists literally fold precisely fitting structures from single viral DNA strands. The nano-adapters were designed such that exactly one DNA origami can bind in every ZMW. The nano-adapters additionally provide docking points for functional units, like fluorescent dyes or the polymerase molecules that are used for DNA sequencing. “With our novel strategy, we connect single molecules via DNA origami with the lithographically fabricated ZMWs. This procedure can improve the efficiency of DNA sequencing and also be beneficial for applications in other areas of research like molecular electronics”, Prof. Tinnefeld summarizes.
About the project
This research project of the NanoBioSciences group of Prof. Philip Tinnfeld (Institute for Physical and Theoretical Chemistry) was conducted at the new Laboratory of Emerging Nanometrology of the Braunschweig University of Technology and was funded by a Starting Grant of the European Research Council (SiMBA).
Publication
E. Pibiri, P. Holzmeister, B. Lalkens, G.P. Acuna, P. Tinnefeld (2014):Single-Molecule Positioning in Zeromode Waveguides by DNA Origami Nano-Adapters – Nano Lett.
Figures
Figure 1: Immobilization strategy: DNA origami (grey rectangles) equipped with a fluorescent dye (red) occupy the small holes in the metal film (ZMWs) in a way that only one adapter fits per cavity.
Figure 2: Comparison between optimal Poisson distribution and the experimentally measured distribution in ZMWs of 200 nm.
Contact
Prof. Philip Tinnefeld
Dr. Guillermo Acuna
Institut für Physikalische und Theoretische Chemie
Arbeitsgruppe NanoBioSciences
Laboratory of Emerging Nanometrology
Technische Universität Braunschweig
Hans-Sommer-Strasse 10
38106 Braunschweig
Tel: 0531 391 5330
E-Mail: p.tinnefeld@tu-braunschweig.de
www.tu-braunschweig.de/pci
www.tu-braunschweig.de/mib/lena